Arabidopsis GLASSY HAIR genes promote trichome papillae development

نویسندگان

  • Bangxia Suo
  • Stephanie Seifert
  • Viktor Kirik
چکیده

Specialized plant cells form cell walls with distinct composition and properties pertinent to their function. Leaf trichomes in Arabidopsis form thick cell walls that support the upright growth of these large cells and, curiously, have strong light-reflective properties. To understand the process of trichome cell-wall maturation and the molecular origins of this optical property, mutants affected in trichome light reflection were isolated and characterized. It was found that GLASSY HAIR (GLH) genes are required for the formation of surface papillae structures at late stages of trichome development. Trichomes in these mutants appeared transparent due to unobstructed light transmission. Genetic analysis of the isolated mutants revealed seven different gene loci. Two--TRICHOME BIREFRINGENCE (TBR) and NOK (Noeck)--have been reported previously to have the glassy trichome mutant phenotype. The other five glh mutants were analysed for cell-wall-related phenotypes. A significant reduction was found in cellulose content in glh2 and glh4 mutant trichomes. In addition to the glassy trichome phenotype, the glh6 mutants showed defects in leaf cuticular wax, and glh6 was found to represent a new allele of the eceriferum 10 (cer10) mutation. Trichomes of the glh1 and glh3 mutants did not show any other phenotypes beside reduced papillae formation. These data suggest that the GLH1 and GLH3 genes may have specific functions in trichome papillae formation, whereas GLH2, GLH4, and GLH6 genes are also involved in deposition of other cell-wall components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of TTG1 and CPC-like MYB genes during Arabidopsis epidermal cell differentiation

The development of Arabidopsis thaliana epidermal cells includes the differentiation of trichomes and root hairs. The TRANSPARENT TESTA GLABRA 1 (TTG1) gene encodes a WD40 protein that induces trichome differentiation and reduces root hair formation in Arabidopsis. The CAPRICE (CPC) gene family includes CPC, ENHANCER OF TRY AND CPC1 (ETC1), ENHANCER OF TRY AND CPC2 (ETC2), and CPC LIKE MYB3 (CP...

متن کامل

Control of Plant Trichome and Root-Hair Development by a Tomato (Solanum lycopersicum) R3 MYB Transcription Factor

In Arabidopsis thaliana the CPC-like MYB transcription factors [CAPRICE (CPC), TRIPTYCHON (TRY), ENHANCER OF TRY AND CPC 1, 2, 3/CPC-LIKE MYB 3 (ETC1, ETC2, ETC3/CPL3), TRICHOMELESS 1, 2/CPC-LIKE MYB 4 (TCL1, TCL2/CPL4)] and the bHLH transcription factors [GLABRA3 (GL3) and ENHANCER OF GLABRA 3 (EGL3)] are central regulators of trichome and root-hair development. We identified TRY and GL3 homol...

متن کامل

Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation.

CAPRICE (CPC) encodes a small protein with an R3 MYB motif and promotes root hair cell differentiation in Arabidopsis thaliana. Three additional CPC-like MYB genes, TRY (TRIPTYCHON), ETC1 (ENHANCER OF TRY AND CPC 1) and ETC2 (ENHANCER OF TRY AND CPC 2) act in a redundant manner with CPC in trichome and root hair patterning. In this study, we identified an additional homolog, CPC-LIKE MYB 3 (CPL...

متن کامل

Genetic control of trichome branch number in Arabidopsis: the roles of the FURCA loci.

We are using trichome (hair) morphogenesis as a model to study how plant cell shape is controlled. During a screen for new mutations that affect trichome branch initiation in Arabidopsis, we identified seven new mutants that show a reduction in trichome branch number from three branches to two. These mutations were named furca, after the Latin word for two-pronged fork. These seven recessive mu...

متن کامل

Regulation of cell fate determination in plants

Building a multicellular organism, like a plant, from a single cell requires the coordinated formation of different cell types in a spatiotemporal arrangement. How different cell types arise in appropriate places and at appropriate times is one of the most intensively investigated questions in modern plant biology. Using models such as trichome formation, root hair formation, and stomatal devel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2013